End to End Data Science On Demand

Land Your Dream Job

in 6 Months

This 6-Month Program unlocks unlimited potential, transforming you from a beginner to a Data Scientist. Gain comprehensive training and develop real-world skills that will land you a high-paying job in the field.

Play Video
0+

Students Placed

0 LPA

Highest Package

0%

Salary Hike

0+

Highring Partners

The future is data-driven

Salaries in Data Science and AI

*source: Data analytics salary study 2024

Why choose

a career in data science

Exciting work

High demand

Great earning potential

At a glance

Program Highlights

01

Interactive learning:

Engage in learning through our on demand videos released every week plus live doubt-clearing sessions for flexible learning.

02

Streamlined learning experience

Utilize a dedicated Learning Management System for easy access to all course materials, including curated notes, workbooks, and assignments.

03

Hands-on application

Reinforce every theoretical concept taught through practical, real-world coding assignment, solved problems that challenge your understanding.

04

Industry-relevant projects

Develop valuable skills by working on impactful “Data Tales” – solving real-world industry problems and presenting your insights.

05

Personalized guidance

Receive dedicated support from experienced mentors through one-on-one consultations, chat, and email interactions.

Whether you want to...

Launch a successful data science career

Advance your career

Enhance your skillset

... this is the ideal program for you!

End-to-end data science course - on demand

Detailed curriculum

This curriculum covers a wide range of topics in data science, from foundational statistics to deep learning and natural language processing. Here’s a concise breakdown

1. Understanding Probability.mp4
2. Practical usecase of probability.mp4
3. Calculate probability of event.mp4
4. Single, multiple events and exclusivity.mp4
5. Additive Rule of Probability.mp4
6. Additive Rule with joint probability.mp4
7. Conditional Probability.mp4
8. Defining Dependent Events.mp4
9. Defining Multiplicative rule and joint Probability.mp4
10. Solving problems with Multiplicative rule.mp4
11. Introducing the Tree Diagram with types of Probability.mp4
12. Type of Probability with Cart Abandonment.mp4
13. Bayes Theorem.mp4
14. Bayes Theorem Explained with brand trust example.mp4
15. Bayes Theorem for covid virus diagnosis.mp4
16. Bayes Theorem continued – Solving the issue with diagnostic report.mp4
17. DS Terminology – Population, sample.mp4
18. Dependent versus Independent Variables.mp4
19. Types of Data – Numeric versus Categorical.mp4
20. Central tendencies – Mean, Median, Mode.mp4
21. Calculation of IQR and boxplots.mp4
22. Using IQR to make sense of data.mp4
23. Measures of Dispersion – Spread, Std Dev.mp4
24. Problems on Std Dev.mp4
25. Introducing Data Distributions.mp4
26. Probability Mass Function Defining.mp4
27. Probability Density Function.mp4
28. Concept of Cumulative Mass Function.mp4
29. Binomial Distribution Explained with real example.mp4
30. Normal Distribution Properties, Skewness.mp4
31. Normal Distribution – area computation.mp4
32. Poissons Distribution.mp4
1. Introducing Inferential Statistics.mp4
2. Central Limit Theorem.mp4
3. Exercise on Central Limit Theorem.mp4
4. Verifying CLT using python.mp4
5. Introducing Confidence Intervals.mp4
6. Confidence Intervals – Explained.mp4
7. Confidence Intervals with a real Problem.mp4
8. Solving Confidence Intervals with Python Scipy.mp4
9. Confidence Intervals using Proportions.mp4
10. Shortcuts for Confidence Interval Calculation.mp4
11. Introducing Hypothesis Testing.mp4
12. Defining the Hypothesis Testing on example.mp4
13. P value In hypothesis Testing.mp4
14. Verfiying Hypothesis Testing.mp4
15. Errors in Hypothesis Testing.mp4
16. Errors in Hypothesis Testing continued.mp4
17. Problems on Hypothesis testing.mp4
18. Problems Continued on Hypothesis testing.mp4
19. Introducing T Distribution.mp4
20. T distribution for confidence Intervals.mp4
21. T Distribution for Hypothesis Testing.mp4
22. Chisquare Distribution – Defining.mp4
23. Chisquare Goodness of fit.mp4
24. Chisquare Dependency of Variable.mp4
1. Data Types in Python.mp4
1.2 Casting Datatypes in Python.mp4
2. Initialising lists.mp4
2.1 List Indexing and Slicing.mp4
2.2 List methods – append.mp4
2.3 List methods – remove elements.mp4
3. Intialising dictionary.mp4
3.1 Keys and values in Dicts.mp4
3.2 Add and remove in Dicts.mp4
4. Initialising Strings.mp4
4.1 String escape Sequences.mp4
4.2 String Operations.mp4
4.3 String indexing and slicing.mp4
4.4 String methods.mp4
4.5 String methods cont.mp4
4.6 String formatting.mp4
5. Loops In Python – if else.mp4
5.1 Loops in Python – For loop.mp4
6. Exception handling in python.mp4
7. Python Functions.mp4
7.1 Python Lambda function.mp4
1.0 Introducing Numpy array.mp4
1.1 Creating Numpy array.mp4
1.2 Creating 2d numpy array.mp4
2 More ways of creating arrays.mp4
3.1 Accessing array elements.mp4
3.2 Slicing numpy array.mp4
3.3 Negative index in numpy array.mp4
3.4 Traversing array in reverse direction.mp4
4.1 Copying a numpy array.mp4
4.2 Reshape numpy array.mp4
4.3 Transposing numpy array.mp4
4.4 Rounding numbers in numpy.mp4
5.1 Slicing array based on condition.mp4
5.2 Cumulative Sum of Np array.mp4
5.3 Common elements in numpy arrays.mp4
6.1 Random Number Generation.mp4
6.2 The Concept of Seed in Random.mp4
6.3 Generating Random Numbers.mp4
7 Broadcasting for Numpy Arrays.mp4
8.1 Any and all in Numpy.mp4
0.1 Introduction to Pandas.mp4
1.0 Initialising Dataframe.mp4
1.1 Loading a dataframe from csv.mp4
1.2 DataFrame attributes and properties.mp4
1.3 Descriptive Stats for Dataframe.mp4
1.4 Finding Missing Values in dataset.mp4
2.1 Operations – Accessing Dataset column.mp4
2.2 DF Operations – Accessing multiple columns in a list.mp4
2.3 DF operations – Indexing, Resetting index.mp4
2.4 DF operations  – Slicing with Iloc.mp4
2.5 DF Operations – Slicing with Loc.mp4
2.6 DF operations – Filtering based on condition.mp4
2.7 DF operations – Value Counts using DF.mp4
2.8 DF operations – Sort Data Frame.mp4
3.1 Data Munging – Groupby.mp4
3.2 Data Munging – Binning.mp4
3.3 Data Munging – Concat Dataframes.mp4
3.4 Data Munging – Merging Data Frames.mp4
3.5 Data Munging – Crosstab.mp4
4.1 Data time in pandas.mp4
3.0 Our first Basic Line Plot.mp4
3.1 Line Plot with X, y, title.mp4
3.2 Line Plot with Line styles, markers.mp4
3.3 Line Plot adding Multiple Lines.mp4
3.4 Line Plot – Changing Xlim Ylim.mp4
3.5 Line Plot – Annotate.mp4
3.6 Line Plot – Real data.mp4
3.7 Line Plot – Multiple Lines.mp4
4.1 Scatter Plot – Basic.mp4
4.2 Scatter Plot – Point color.mp4
4.3 Scatter plot – Colors using c.mp4
4.4 Scatter Plot – Annotating a plot.mp4
4.5 Scatter Plot – Summarised.mp4
4.6 Scatter plot – real data.mp4
4.7 Scatter Plot – Creating multiple clusters.mp4
4.8 Scatter Plot – Clustering.mp4
5.1 Histogram.mp4
5.2 Histogram – Step curve.mp4
5.3 Histogram Stacked data.mp4
5.4 Histogram – real data.mp4
5.5 Histogram – Custome bin widths.mp4
5.7 Histogram – Real data.mp4
6.1 Bar Plot – Basic plot.mp4
6.2 Bar Plot – Real data.mp4
6.3 Bar Plot – Errors, Stacked.mp4
6.4 Bar Plot – Seaborn, Errors.mp4
7.1 Box Plot – Defining basics.mp4
7.2 Box Plot- Customising Box plot.mp4
8.1 Additional Plots – Violin plot.mp4
8.2 Additional Plots – Strip plot.mp4
8.3 Additional Plots – LM plot.mp4
8.4 Pairplot.mp4
8.5 Pie plot.mp4
2.1 Standard Missing Values  Identification.mp4
2.2 Non Standard Missing Values  Identification  Numeric Variables.mp4
2.3 Non Standard Missing Values Identification – Unexpected Missing Values.mp4
2.4 Summarising missing values..mp4
3.1 Delete rows with missing values.mp4
3.2 Impute with fixed value.mp4
3.3 Impute with forward and backward fill.mp4
3.5 Impute with Transformermixin function.mp4
4.1 Conversion of data types.mp4
5 Introducing outliers and effects of Outliers.mp4
5.1 Outlier detection approaches.mp4
5.2 Inter Quartile Range for Outlier detection.mp4
5.3 Outlier Detection using Z score method.mp4
5.4 Outlier Detection using PCA and visual inspection.mp4
6.1 Categorical Encoding – Dummies.mp4
6.3 Categorical Encoding – Sklearn onehot encoder.mp4
6.4 Label Encoding – sklearn.mp4
7. Scaling Data – Standard and Min Max scaler.mp4
1. Introducing Regression.mp4
2. Covariance Analysis.mp4
3. Issues with Covariance.mp4
4. Simple linear Regression.mp4
5. Deriving the betas – SLR.mp4
6. Assumptions in Linear Regression.mp4
7.1 Metrics – RMSE.mp4
7.2 Metric – Coefficient Analysis.mp4
7.3 Metric – R Squared.mp4
8. Simple Linear Regression – Detailed Steps.mp4
9. Multiple Linear Regression derived..mp4
10. MLR – Evaluation – Adjusted R Squared.mp4
11. Measuring High Leverage points.mp4
12. Data Transformations for Linear Regression.mp4
13. Gradient Descent way to solve Linear Regression.mp4
14. Tuning learning rate in Gradient Descent.mp4
15. Multicollinearity – Solution with VIF.mp4
16. Regularisation – Overfitting.mp4
1.1 Correlations.mp4
1.2 Correlation on real data – spearman and pearson method.mp4
1.3 Correlations with heatmap.mp4
2.1 Verifying Regression assumptions linearity.mp4
2.2 Verify Regression assumptions heterscedasticity.mp4
2.3 Differentiating Linear and Non Linear Relationship.mp4
3. Outliers and High Leverage Points.mp4
3.1 Removing outliers for regression.mp4
4. Simple Linear Regression using Diabetes data.mp4
4.1 Simple Linear Regresion – Interpreting SM OLS.mp4
5. Multiple Linear Regression – Using Sklearn Boston.mp4
5.1 Multiple Linear Regression – Metrics.mp4
6. Multi Collinearity solving with VIF.mp4
7.1 Linear Regression – Indepth Analysis – Step by Step.mp4
7.2 Linear Regression – Indepth Analysis – Correlations.mp4
7.3 Linear Regression – Indepth Analysis – Processing data.mp4
7.4 Linear Regression – Indepth Analysis – Model fitting and metrics.mp4
8.1 Regularisation – Understanding on real data.mp4
8.2 Achieving Regularisation with Ridge Regression.mp4
8.3 Achieving Regularisation with Ridge Regression.mp4
9. GridSearch for regression.mp4
10.1 Visualising regression model.mp4
10.2 Printing metrics of regression models.mp4
1. Logistic Regression.mp4
2. Log Reg Definitions Continued.mp4
3. Logistic Modelling – Mathematical Equation.mp4
4. Defining Cross Entropy Loss.mp4
5. Solving the Log Reg.mkv
5. Solving the Log Reg.mp4
6. Confusion Matrix.mp4
7. Precision Recall.mp4
8. Precision Versus Recall with usecase.mp4
9. Roc AUC as a metric.mkv
9. Roc AUC as a metric.mp4
1. Introducing the attrition problem.mp4
1.1 Data understanding, Diagnostics.mp4
1.2 Datatype conversion.mp4
2.1 EDA  Boxplot for outliers.mp4
2.2 EDA Understanding Target Variable.mp4
2.3 EDA Bivariate Analysis on DataSet.mp4
2.4 EDA Additional Insights from Data.mp4
2.5 Chisquaare test between categorical and target.mp4
3,4 Model Building and training.mp4
5.0 Model Evaluation.mp4
5.1 ROC Area under curve for evaluation.mp4
5.2 Precision Recall Curve.mp4
1. Defining Decision Trees.mp4
2. Step wise building of Decision Tree.mp4
3. Information Gain as Metric.mp4
4. Gains Ratio as metric.mp4
5. Gini Index as purity metric.mp4
6. Chisquare purity metric, when to use dtree.mp4
7. Stopping Criteria and Overfitting in D tree.mp4
8. Cart and C5.0 for decision trees.mp4
9. Regression Trees.mp4
1. Introducing the problem and Dataset.mp4
1.2 Data Understanding.mp4
1.3 Data Cleaning.mp4
1.4 Data Cleaning – Missing Values.mp4
2.1 EDA – Univariate Analysis.mp4
2.2 EDA Count Plot.mp4
2.3.1 Eda Bivariate Analysis 1.mp4
2.3.2 EDA – Bivariate Analysis 2.mp4
3.1 Modelling Essentials.mp4
4. Model Fitting.mp4
5.1 Model Evaluation – Classification report overfitting.mp4
5.2 Maximising the recall or precision.mp4
6.1 Visualising the Decision Tree.mp4
7. Fine Tuning the Decision Tree.mp4
7.3 Fine tuning Decision Tree.mp4
8 Feature Importances using Decision Tree.mp4
9 Grid Search fine tuning.mp4
1.0 Introducing SVM.mp4
2.0 SVM Mathematical Modelling.mp4
3 Deriving maximum Margin.mp4
4 Soft Margin SVM for noisy Data.mp4
5 Transformations and Kernel Trick for Non Linear Data.mp4
6 Summary of SVM.mp4
1.1 Introducing Problem and Dataset.mp4
1.2 Exploring the Data – Describe, analyse age.mp4
2.1 Missing Values and connection with SVM.mp4
2.2 Data Cleaning – Junk values, structural errors.mp4
2.3 Imputation for Missing values using KNN DF.mp4
3. Outlier Analysis with Unvariate Analysis.mp4
4.1 Univariate Analysis – Target Column.mp4
4.2 Univariate Analysis Categorical Features.mp4
4.3 Univariate Analysis Numeric Features.mp4
5.1 Bivariate Analysis Correlation heatmap.mp4
5.2 Bivariate Analysis  Numeric versus Categorical features.mp4
5.3 Bivariate Analysis categorical versus categorical column.mp4
6.1 Data Preparation for Modelling.mp4
6.2 Normalising the Data using Minmax.mp4
7 Running the models.mp4
8. Kernels and when to use them – rbf kernel.mp4
9. Finetuning Hyper parameters for SVM.mp4
1. Introducing KNN.mp4
2. Distance Metrics in KNN.mp4
3. Distance Metrics Continued.mp4
4. Variants and steps fo best KNN.mp4
1. Introduction to neural networks.mp4
10. Backward Propogation.mp4
2. The Artificial neuron.mp4
3. Perceptron Model.mp4
4. MLP solving XOR gate.mp4
5. MLP  – Need for Activation Function.mp4
6. Activation Functions – In Detailed.mp4
7. Refined Versions of Relu, Bias.mp4
8. Forward Propogation.mp4
9. Forward Prop, Errors – Continued.mp4
1. Build your first AI app – chatbot or Code an online Saas in Minutes
2. History of Language and Language Modelling ,
3. Word Representations – Embeddings / Word2Vec / Tokens
4. Prompt Engineering &  Text Generation
5. Zero Shot and Few shot learning
6. Building our own LLM : Using the transformers
7. Language Modelling & Transformer Architecture – in Detailed
8. Building the LLM from the scratch –  Transformer Architecture
9. Classify reviews or movie plots or story lines
10. How to classify anything or everything using LLMs
11. Fine Tuning Language Models for domain specific cases
12. Real World case study using LLMs : Clustering & Topic Modelling
13. Dense Retrieval, Reranking and Evaluation of Retrieval
14. RAG : Grounded Generation, RAG with local Models
15. Advanced RAG, Evaluation of RAG
16. Types of Agents – Control,Autonomy,
17. Tools in AI , Available tools, how to include in workflows
18. Agentic RAG & MCP in context of Agents
19. Planning & Reasoning, Memory in Context of Agents
20. Multi Agentic Systems and two enterprise use cases

This curriculum equips you with the necessary skills and knowledge to become a successful data scientist.